メタマテリアルアンテナ

防衛大学校 電気電子工学科 准教授 道下 尚文

1. はじめに

メタマテリアルとは、自然界にはない特性を有する人工 的な電磁構造である^[1]。誘電率と透磁率が同時に負となる 媒質の電磁界が理論的に考察されたのは1967年であるが、 2001年に負の屈折率が実証されたのを機に、欧米を中心に メタマテリアル研究が盛んになった。また、2002年に発表 された伝送線路アプローチは、マイクロ波回路やアンテナ 設計に有効な設計法であったため、メタマテリアルは特に アンテナ分野で研究が加速した。メタマテリアル前史や現 代史の詳細はハンドブック^[2]などで補っていただきたい。

メタマテリアル研究は、理論解析や電磁界シミュレーショ ンによる新奇な電磁現象の発見から、実用化のフェーズへ 移行してきた。近年では、テラヘルツあるいは光領域にお けるメタマテリアル研究の進歩も著しい。伝熱、流体、構造、 音響などとのマルチフィジックス解析も注目されている。本 稿では、メタマテリアルアンテナを理解するために、アン テナを構成する伝送線路として左手系はしご型構造を取り 上げ、各種アンテナへの応用例を解説する^[3-5]。また、メ タマテリアルの概念を応用した高度な分散設計による実用 アンテナの例を紹介する。

2. 左手系はしご型構造

メタマテリアルアンテナは、周期構造を利用したアンテ ナである。従来のアンテナは右手系伝送線路で構成され、 波長に依存する長さで共振する。メタマテリアル技術を用 いると、同じアンテナサイズで、右手系共振周波数よりも 低い周波数で左手系共振が得られるため、アンテナの小 型化が可能になる。しかし、アンテナ特性は狭帯域あるい は低放射効率となる。本章では、左手系はしご型構造のア ンテナ応用例を解説する。

2.1 ダイポールアンテナの小型化

図1に左手系ダイポールアンテナ構造図を示す。この構造 は長さ100mmの2本の銅線と長さ10mmの4本の短絡銅線 からなる、はしご型線路の構造である。銅線の半径は 0.45mmである。図中の〇で示す部分に集中定数のキャパ シタンス、〇で示す部分に集中定数のインダクタンスを装

荷する。それぞれ直列キャパシタンスC_L、並列インダクタン スL_Lとして動作する。2本の銅線に生じるインダクタンスと キャパシタンスがそれぞれ、右手/左手系複合伝送線路理 論に基づく直列インダクタンスL_Rと並列キャパシタンスC_Rに 相当する。

メタマテリアルの重要な概念の一つが分散特性の設計 である。例えば、図1のアンテナはT型回路からなる単位セ ルが4つ縦続接続された構成である。この線路の位相定数 βは単位セルの等価回路パラメータから求めることができ る。通常の右手系線路の位相速度v_pと群速度v_g(エネルギー の流れ)の符号は等しくなる。しかし、図1のように左手系 素子であるC_L及びL_Lを装荷すると、右手系線路と左手系 線路が複合した線路となり、v_pとv_gの符号が反対となるた め、左手系のバックワード波が伝搬する。この左手系帯域 で動作するように設計した線路をアンテナに用いることで アンテナの小型化が可能になる。

単位セルに装荷する左手系素子 C_L 及び L_L を変化するこ とで、分散特性を設計する。 C_L =1pF、 L_L =27nHとしたとき、 782MHzにおいて位相変化量 βp =45°となった。ここで、 周期長p=25mmである。この単位セルを4つ縦続接続すれ ば、本アンテナ上には、基本モードである半波長(位相変 化量180°)の電流が分布することになる。図2に C_L =1pF、 L_L=27nHとしたときのダイポールアンテナの750MHzにおけ る3次元放射パターンを示す。ここで、観測周波数750MHz は分散設計で得られた位相変化量45°となる周波数782MHz とは異なっている。これは、分散設計では単位セルが無限 に周期配列された際の位相定数を求めているためである。 750MHzにおいて、垂直面内は8の字、水平面内は無指向性 のパターンとなることが分かる。なお、アンテナ長は750MHz

特

■図2. 左手系ダイポールアンテナの3次元放射パターン

に対し0.25波長であり、従来のダイポールアンテナの半分の 長さである。動作利得は1.7dBiとなった。

2.2 左手系寄生素子による相互結合抑制

無線通信システムでは、周波数帯域を効率良く利用する ために、それぞれのシステムの隣接する周波数帯域が他の システムで使用されている。したがって、アンテナの後段に フィルタを挿入し、隣接システムへの干渉を抑制する必要 がある。しかし、隣接システムの使用周波数が近い場合に は、急峻な特性を有する高アイソレーションフィルタが要求 される。そこで、アンテナ自体にフィルタ機能を持たせる高 アイソレーション実現法が提案されている。また、アンテナ の形状や配置を工夫することで阻止帯域を制御する方法が 提案されている。このように急峻な帯域阻止特性により、 アンテナ特性を維持したまま近接システム間の結合を抑制 することは重要な課題となっている。前節では、左手系は しご型構造をアンテナ素子に適用したが、本節では、左手

左手系寄生素子付ダイポールアンテナの構造を図3に示 す。寄生素子1は、図1と同じ構成である。アンテナ1及び2 の共振周波数は720MHz及び750MHzであり、寄生素子1

及び2の阻止周波数は750MHz及び720MHzである。まず アンテナ1及び寄生素子1の組合せの場合、アンテナ1の近 傍に左手系寄生素子1を配置すると、750MHz付近でダイ ポールアンテナと左手系線路の主線路に流れる電流は逆相 となり、阻止帯域を生成できる。次に、アンテナ2と寄生 素子2の組合せでは、元のダイポールアンテナの共振周波 数より低域側に阻止帯域を生成する必要がある。しかし、 アンテナ1と寄生素子1の配置のように左手系線路の直列CL が装荷されている線をアンテナ側に配置すると、元のダイ ポールアンテナの特性を維持しながら低域側に阻止帯域を 生成できない。そこで、左手系はしご型線路のグランド線 をアンテナ2側に配置してパラメータを検討した。その結果、 寄生素子のパラメータはL_{L1}=27nH、L_{L2}=22nH、C_L=1.0pF、 d₁=10mm、d₂=16mm、h=30mmとなった。750MHzにお ける左手系寄生素子付ダイポールアンテナ間の電界分布を 図4に示す。寄生素子なしの場合、電界はアンテナ1から2 に対し広く分布している。一方、寄生素子を配置すると電 界はアンテナ1の近傍に集中することが分かる。この結果、

■図5. 小型指向性可変アンテナ

アンテナ間の相互結合は、寄生素子なしの場合-25dBで あるが、寄生素子を配置すると-36dBとなり、11dBの結 合抑制を実現できる。

2.3 指向性切換アンテナ

放射素子からある程度離れた位置に導波素子、反射素 子を配置すると、アンテナの放射特性に指向性をもたせる ことができる。この導波素子、反射素子として、図1と同じ 構成の左手系寄生素子を用いると、放射素子と導波素子、 反射素子との間隔を短くすることができる。図1の左手系ダ イポールアンテナを寄生素子として利用した、指向性制御 小形アンテナの構成を図5に示す。図5のように、ダイポール アンテナを中心として、左手系寄生素子①~④を配置し、 寄生素子①のC₁の値を0.65pF、その他の素子のC₁の値を 1.65pFとしたときの760MHzにおける水平面放射パターン を図6 (a)に示す。寄生素子①は760MHzにおいて反射器と して動作することが分かる。同様に、図6 (b)に示すように、 寄生素子②のC_Lの値を0.65pF、その他の素子のC_Lの値を 1.65pFとしたときは、寄生素子②が反射器として動作する。 したがって、C_Lを制御することで所望の指向性を切り換え ることが可能となる。アンテナと寄生素子の間隔は0.05波 長であり、従来と比べ1/5の細径な構成を実現できる。また、 自動車などの移動体に搭載する場合は、アンテナの低姿 勢化が必要となる。そこで、低姿勢化された放射素子の周 りに、マッシュルーム構造からなる左手系寄生素子が配置 された、高さ0.03波長の低姿勢アンテナが提案されている。

3. メタスリーブアンテナ

ここでは、左手系線路として同軸線路を採用し、小形ア ンテナとして応用した例を解説する^[6]。通常の右手系同軸 線路の等価回路は前章のはしご型線路と同様に直列Lと

13

並列Cで表される。したがって、左手系の素子として、内 導体を分割し直列Cを追加し、内導体と外導体をビアで 接続することで並列Lを追加することになる。図7にメタス リーブアンテナの構造を示す。メタスリーブアンテナは小型 放射素子と小型チョークによって構成される。小型放射素 子と小型チョークはそれぞれ構造の異なる単位セル(周期 長5mm)が5セル配列されている。小型放射素子の上端と 小型チョークの下端は開放端である。給電用同軸線路の 外導体(直径14mm)は小型チョークの内導体も兼ねている。 小型放射素子の内導体の直径を28mm、内部導体を分割 するギャップの長さを0.3mm、ビアの長さを11mm、ビア の直径を0.5mmとし、小型チョークの外部導体を分割する ギャップの長さを0.5mm、ビアの長さを18mmとした。

図8に710MHzにおける電流分布を示す。それぞれの電 流値は給電部の内部導体に流れる電流値で規格化してい る。チョークがない場合は、-8dBから-4dBの漏れ電流 が流れている。λ/4チョークあるいは小型チョークを取り付 けると-10dB以下に抑制されることが分かる。また、λ/4

■図7. メタスリーブアンテナ構造

■図9. 3次元放射パターン

チョーク付きアンテナの長さは0.44波長であるのに対し、メタ スリーブアンテナは0.12波長に小型化されている。710MHz における3次元放射パターンを図9に示す。漏れ電流を抑制 しているため、垂直面内の放射パターンは8の字となってい る。しかし、水平面内の動作利得は偏差があり、+y方向 では-1.8dBi、-y方向は+2.4dBiとなる。これは、ビアが +y方向だけに装荷されるためである。

スリーブアンテナはバランや地板が不要で、測定用の同 軸ケーブルを直接接続しても漏れ電流は抑制されるため、 測定用途や無線LAN、防災無線など実用的なアンテナと して広く利用されている。本章で解説したメタスリーブアン テナは、放射素子とチョークに左手系線路を用いることで、 サイズを大幅に削減した。これは上記の用途などに非常に 有用な実用アンテナといえる。今後は、細径化や広帯域化 が課題である。

4. メタロッドアンテナ

LTE-Advancedにおいて、スモールセル用の基地局アン テナに要求される性能としては、水平面内無指向性、垂直 面内高チルトの放射特性が挙げられる。また、アンテナを 数多く設置する必要があるため、目立たない構造で、かつ、 安価なアンテナが求められている。従来の無指向性の偏波 共用アンテナは、垂直偏波・水平偏波共用のアンテナが主 に使われているが、水平偏波無指向性を有するアンテナで は、アンテナ径を細くすることが困難であるという問題が あった。この問題に対して、偏波合成方式という偏波共用 法が提案されており、無指向性偏波共用アンテナの細径化

の有効な手段の一つと考えられる。

そこで、移動通信用基地局アンテナ、特にスモールセル 用アンテナへの応用を目的に、図10に示すようなコプレーナ ストリップ型の左手系線路を用いた無指向性の漏れ波アン テナが提案されている^[7]。基板と平行なy軸方向には垂直 偏波成分、基板と直交するx軸方向には水平偏波成分が放 射する構造であり、設計周波数で左手系の速波帯となるよ うに設計される。アンテナは誘電体基板の両面を用いてお り、アンテナ下部から差動モードで給電される。単位セル

■図11. メタロッドアンテナの3次元放射パターン

は、直列のキャパシタンスとして平行平板コンデンサ、並列 のインダクタンスとして水平方向のスタブがビアでコプレー ナストリップに接続されている。アンテナ幅は10mmであり、 0.12波長である。

次に、20セル配列したアンテナの3次元放射パターンを 図11に示す。設計周波数3.5GHzにおいて、水平面指向性 については偏波合成方式によって偏差0.8dBの無指向性が 得られ、垂直面指向性についてはチルト角34°の高チルト特 性が得られた。動作利得は6.3dBiである。なお、本アンテ ナと同一の構造のアンテナを直交的に組み合わせることに よって、2ブランチ化が可能である。2本のアンテナを直交 的に組み合わせるため、アンテナ間の相関は低く、また、 アンテナ径も変わらないので、非常に細径なMIMOアンテ ナが実現可能である。

メタロッドアンテナの垂直面指向性の周波数に対する ビーム方向の変化 (ビームスクイント) は、200MHzの帯域 で18°変化する。今後は、ビームスクイントの低減が課題で ある。

5. メタレドーム

レーダーや移動通信基地局用の成形ビームアンテナは、 レドームで保護されている。従来、ビーム成形や高利得化 は、移相器や放射器の数により達成されてきた。ITSレー ダー用アンテナとして、従来の誘電体レンズと、給電回路 でビームパターンを成形した放射器との組合せにより、小 型で高利得なアンテナが実現されている。しかし、従来の 給電回路による放射器のビームパターン成形には限界があ り、設計の自由度を上げる必要がある。

そこで、レドーム材料をメタマテリアルレンズに置き換え

集 アンテナ及び関連技術の最新動向

ることで、アンテナ全体を簡素化する構成法が提案されて いる^[8]。図12に示すのは、従来及び提案する基地局アンテ ナの構成である。従来の基地局アンテナでは、リニアアレー アンテナがサブアレーに分割され、それぞれのサブアレー は複数の放射素子からなる。例えば、16素子アレーでは4つ の放射素子からなるサブアレー4組で構成される。給電ケー ブルはサブアレーごとに接続されるため、周波数共用化に おいてレドーム内にはケーブル用の広い空間が必要となる。

通常の誘電体材料で製作されたレンズは一般的に凸形 状である。このレンズ効果をレドームに付加する場合、レドー ムは厚くなり、基地局アンテナの直径は増大する。これは 風圧荷重の点からも問題となる。一方、負屈折率レンズの 焦点距離は短くできるため、メタマテリアルレンズで構成さ れたレドームは細径でビーム形成することができる。

ここで、基本的なレンズ整形のための設計パラメータを 説明する。レンズはz軸に対し軸対称構造であり、給電放 射パターンと開口分布を与えることで、レンズ形状をレイト レース法により求める。レンズ表面の修整には、レンズ内・ 外面における屈折の法則とエネルギー保存則を同時に満た すように設計する。

図13 (a) に給電放射パターンを示す。給電放射パターン はcos^m($\theta - \theta_s$) で表される。ここで、 θ_s はビーム方向で あり、mはビームの鋭さである。 θ_s が0度のときは、放射の ピークはz軸方向となる。ここでは、図13 (a) に示すように、 θ_s を60度とした。この放射パターンは、約1波長のダイポー ルアンテナで実現できる。メタマテリアルレンズの屈折率を -4とし、給電からレンズ端部の見込み角 θ_M を85度、開口分 布のエッジレベルを1/15、レドームの全長を1500mmとした ときのレンズ形状を求めた結果を図13 (b) に示す。図13 (b) から、負屈折率メタマテリアルレンズレドームの半径は 300mmまで低減することができた。

本章で解説したメタレドームを構成する材料は屈折率の 周波数特性を考慮していない。一方、左手系線路からなる 3次元メタマテリアル構造は周波数分散や異方性を持つた め、これらの特性を考慮したレンズ表面の形状設計法の開 発が求められる。

6. おわりに

本稿では、メタマテリアルアンテナを構成する伝送線路 の選定から各種アンテナ性能向上のためのプロセスを解説 し、高度な分散設計による実用アンテナの例を紹介した。 本稿では紹介できなかったが、近年では、メタサーフェス の研究も盛んになってきた。メタサーフェスは部分反射表 面や周波数選択板、電磁バンドギャップ構造など2次元構 造体で構成され、やはりアンテナ分野で多くの応用例が発 表されている。アクティブメタサーフェスや非相反メタサー フェスなどの研究も進んでいるため、これらを応用したア ンテナの実用化に期待したい。

参考文献

- [1] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscience, 2005.
- [2] 萩行正憲,石原照也,真田篤志,メタマテリアルハンドブック基礎編,講談社, Nov. 2015.
- [3] 石原照也,メタマテリアル-最新技術と応用-,シーエムシー 出版, Dec. 2007.
- [4] 新井宏之, 道下尚文, アンテナの基礎と小形化手法-メタ マテリアル技術のアンテナ応用-, リアライズ理工センター, Feb. 2010.
- [5] 石原照也, 真田篤志, 梶川浩太郎, メタマテリアルII, シー エムシー出版, June 2012.
- [6] T. Fukushima, N. Michishita, H. Morishita, and N. Fujimoto, "Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines," *IEICE Trans. Commun.*, vol.E102-B, no.2, pp.205-215, Feb. 2019.
- [7] 大島一郎, 関卓也, 道下尚文, 長敬三, "左手系漏れ波オ ムニアンテナ," B-1-99, 信学総大, March 2015.
- [8] N. Michishita and Y. Yamada, "Metamaterial Radome Composed of Negative Refractive Index Lens for Mobile Base Station Antennas," *Int. Conf. Adv. Technol. Commun.*, Hanoi, Vietnam, pp.60-63, Oct. 2014.