量子技術を用いた新しい計算機への取組み

日本電信電話株式会社 NTT物性科学基礎研究 量子電子物性研究部 超伝導量子回路研究 グループ グループリーダ

日本電信電話株式会社 NTT物性科学基礎研究 量子光物性研究部 量子光制御研究グルー プグループリーダ

武居

ひろき

日本電信電話株式会社 NTT物性科学基礎研究 企画担当 企画担当部長

1. はじめに

デジタル計算機の進展に飽和が見られる現在、物理シス テムを用いて既存の計算機が不得手としてきた問題を効率良 く解くことを目的とした計算機の研究開発が盛んに行われてい る。中でも、量子計算機は、量子重ね合わせ状態を用いる ことで従来の計算機に対して計算時間、エネルギー消費等 において飛躍的な効率化を可能とする技術として注目を集 め、最近ではIBM、Google、マイクロソフトといった巨大企 業が開発に本腰を入れつつある。本稿では、NTTにおける 物理システムを用いた新しい計算機実現への取組みついて 紹介する。第1章では、NTTがこれまで開発してきた量子エ レクトロニクス技術を用いた新しい計算機「コヒーレントイジン グマシン (CIM)」について述べる。第2章では、量子計算 機の基本素子となる量子ビットを用いた量子力学の原理実証 実験を紹介する。

2. 光を使った新原理計算機「コヒーレントイジングマシン」

NTTでは、量子エレクトロニクス技術を用いて、組合せ最 適化問題と呼ばれる問題を効率よく解く新原理計算機CIM の研究開発を行っている。CIMは、縮退光パラメトリック発 振器 (DOPO) と呼ばれる光発振器を用いて、相互作用する スピン群の理論モデルである「イジングモデル」のエネルギー 最小問題を高速に解くことができるものである。

DOPOは、発振閾値より上においてその発振位相が後述 のポンプ光の位相に対して0またはπの2値の何れかしかとりえ ない、特殊な光発振器である。よって、位相0を上向きスピン、 位相πを下向きスピンと割り当てることにより、イジングスピン状 態をDOPOの位相で安定に表現することができる。DOPOは、 位相感応増幅器 (PSA)^[1] と呼ばれる特殊な光増幅器を光 共振器内に配置することで生成する。PSAは、光パラメトリッ ク増幅器の一種で、非線形光学媒質にポンプ光と信号光を 入力することで、信号光を増幅し、信号光とポンプ光の差周 波に相当する周波数の光(アイドラ光)を発生するものである。 ここで、信号光とアイドラ光が同じ周波数となるとき、この増 幅器はポンプ光に対する位相差が0またはπの光をもっとも効 率よく増幅する。これを光共振器内に配置することで、ポン プ光に対する位相差0またはπのみで発振する光発振器を得 ることができる。

この光発振器において、パルス状態のポンプ光を用い、 光共振器の1周時間をポンプ光パルスの時間間隔のN倍に設 定することで、1つの光システムを用いてN個の独立なDOPO パルスを発生することができる^[2]。NTTでは、長さが1km~ 20kmの光共振器と、繰り返し周波数1GHz~10GHzのポン プ光パルスを用いることで、5000~100万の時間多重された DOPOパルス群の一括発生に成功している^[3-6]。

DOPOパルス間の相互作用は、遅延干渉計による直接結 合法^[2, 3]と測定・フィードバック法 (MFB)^[5, 6] がこれまで に報告されている。ここではMFBについて述べる。MFBを 用いたCIMの概略図を図1に示す。1kmの光ファイバ共振器 内に配置されたPSAを1GHzの繰り返し周波数のポンプ光パ ルスで駆動することにより、約5000のDOPOパルス群を発生 可能である。PSAにポンプ光を入力すると、真空スクイズド光 と呼ばれる雑音光パルスが発生し、それらが共振器を周回し、 PSAにより繰り返し増幅を受けることで、光パルス振幅が次 第に増幅し、約1000周後にDOPOの特徴である位相の離散 化が起こる。このとき、DOPO共振器1周ごとに2048個の DOPOパルス群のエネルギーの一部をビームスプリッターで共 振器外に取り出し、平衡ホモダイン検出器を用いてその振幅 測定を行う。得られた2048の振幅測定結果(2048要素のべ クトル) は、Field programmable gate array (FPGA) に入力される。FPGAには、解きたいイジングモデル問題に 相当するスピン間相互作用(2048 x 2048の行列)をあらか じめ入力しておく。FPGAは、これらの積を計算することで、 所望の結合を実現するための各DOPOパルスへの帰還信号

図1. CIMの構成 (NTT技術ジャーナル Vol.2017.5、pp.11-14 (2017) より転載)

図2. CIMによる最大カット問題の解探索。(a) 頂点数2000、枝数19900のグラフ問題の可視化。 頂点がピンクの点、枝が白線で示されている。(b) CIMによる解探索結果。頂点が赤と青の 2グループに分割された結果、緑で示す枝を切ることができた。(NTT技術ジャーナル Vol.2017.5、pp.11-14(2017)より転載)

を得る。これを光変調器により、共振器内を周回するDOPO パルスと同じ光周波数をもつ光パルスに重畳し、DOPOパル スに注入することで、DOPO間結合を実現する。本手法によ り、2000スピン間の全ての組合せの2体相互作用(有方向 結合も含めると、約400万通り)を実現することができる。動 作開始時にはランダムな位相を有していた真空スクイズド光パ ルス群は、MFBにより相互作用を繰り返し、やがて全系が最 も安定となる位相の組合せで発振する。発振後の各DOPO の位相を読み取ることで、入力したイジング問題の解を得る。

NTTは、NII、大阪大学、東京大学らと共同で、MFB に基づくCIMを構築し、大規模組合せ最適化問題の解探索 を実現した(図2)^[5]。2016年に実施した実験では、2000要 素の全結合グラフの最大カット問題の解探索において、CPU 上で実装した焼きなまし法と同程度の解を、約50倍の速さで 得た。現在NTTでは、コンパクト化と長期安定動作を達成し たCIM装置を開発、LASOLVという技術ブランド名を冠して 実社会への適用を目指し研究開発を進めている。

3. 量子ビットを用いた量子力学の原理実証実験

量子計算機実現に向けて注目を集めているのが、イオント ラップ量子計算機と超伝導量子ビットである。前者は、天然 の原子というミクロな物理系を量子ビットとして利用するため、 周りのノイズ環境から隔離され、量子計算に必要なコヒーレ ンス時間が長いという特徴を有する。一方、後者は、キャパ シタ、インダクタ、ジョセフソン接合といった回路要素の組合 せで構成されるため、素子を自由に設計することができ、拡 張性・制御性に優れている。しかしながら、半導体微細加 工技術で作製する超伝導量子ビットは、原子と比較してマク ロな物理系(数µm程度)であるためノイズの影響を受けや すく、コヒーレンス時間が短いという欠点があった。近年、 回路設計の工夫により飛躍的にコヒーレンス特性が改善し、 イオントラップと遜色のないゲート忠実度が得られているが、こ こ20年、超伝導量子ビットの研究では、コヒーレンス特性改 善に多大な努力が払われてきた。その過程において、NTT では超伝導量子ビットがマクロな系であるという特徴を活かし、 「量子力学はどのスケールまで適用できるのか?」という量子 力学誕生以来の基本問題を検証した。

実在性と非実在性

カップの中にサイコロを入れて振る実験を行う。カップを開 けて観測したときに「1」の目が出たならば、開ける前からサ イコロの目が「1」であったと考えられる。このようにある物体 を観測しその状態を知ったとき、観測以前から既にその状態 が決まっていた、すなわち観測により状態は変化しないという 考えは「実在性」と呼ばれ、日常の世界で当たり前に成り立っ ている(図3(a))。

一方、量子力学に従う物体は、「重ね合わせ状態」という、 日常の世界での常識に反する奇妙な状態を示す。例えば図3 (b)のように、量子力学に従う量子サイコロを仮定する。カッ プの中では「1」から「6」までの目が同じ確率で存在する 重ね合わせ状態が実現されており、カップを開けて観測した 瞬間にどれか1つの状態が確定する。このように観測以前に は状態が確定しておらず観測によって初めて状態が確定す る性質は「非実在性」と呼ばれ量子力学に従うミクロな系(電

子や原子など) で現れることが知られている。もちろん、サイ コロのようにマクロな物体で「非実在性」を検証することは できないが、どの程度マクロな系で量子力学が成立するかは、 興味深い問題である。

マクロな系の準備

1985年イリノイ大学のレゲット教授は、ジョセフソン接合を 有する超伝導リングを準備すると、右回りに流れる電流と左 回りに流れる電流の重ね合わせ状態が実現し、マクロな系で の「非実在性」を検証できるという論文を発表した^{「7]}。そ の後、量子計算機の注目が高まる中、超伝導回路が発展し、 3つの接合を有する超伝導リングが超伝導磁束量子ビットとし て確立された(図4 (a))。リングを貫く磁場が磁束量子 Φ_0 の半整数倍(…-0.5、0.5、1.5、…)の近傍となるとき、磁 束量子ビットを右回り(または左回り)に流れる電流状態が 安定化する。特筆すべきは、磁束量子ビットのサイズ(数 μ m) が電子や原子と比較してマクロである点と、この電流(数 100nA)は毎秒1兆個もの電子の流れであるという点である。 NTTでは、このマクロな物理量である電流の量子重ね合わ せ状態を確認し、非実在性を検証することを目指した。

「非実在性」の検証

レゲット教授は、超伝導リングの電流状態を複数の時刻で 観測する思考実験を提案した。状態を乱さない観測が可能 であり、かつ実在性が成立する場合、その観測値の相関で 表されるレゲット・ガーグ不等式が満たされることを示した。 つまり、状態を乱さない観測を行い、この不等式の破れを示 すことができれば非実在性の現れ、すなわち量子力学の成 立を示すことができる。NTTでは、この不等式と数学的に等 価な条件を導き出し、以下に示す方法で実験的に非実在性 を検証した^[8]。

磁東量子ビットが量子力学に従うならば、2つの電流状態 $|-1\rangle$ 、 $|+1\rangle$ のエネルギー差に相当するマイクロ波を適切な 時間照射すると、量子重ね合わせ状態 $|-1\rangle$ + $|1\rangle$ が実現 される。この操作を4回繰り返すと図4 (b)に示すように元の 状態に戻るため、このマイクロ波照射を状態操作($\theta=\pi/2$) と呼ぶことにする。この状態操作を用いて図4 (c)に示す2つ の実験を行う。まず磁束量子ビットを $|-1\rangle$ の状態に準備し、 2回状態操作を繰り返し、最終状態に対する読み出し結果を 比較する。違いは状態操作間の観測の有無である。仮に実 在性が成立するならば観測の前後で状態は変化しないため、 2つの実験に違いは現れず、読み出しの期待値 $\langle Q_3 \rangle$ の差

d_{ρ} は0となる。

次に、非実在性が現れる、すなわち量子力学が成立する 場合を考える。図4 (c) の2番目の実験では、初期状態 $|-1\rangle$ は2回の状態操作後、最終状態 $|1\rangle$ となり、読み出しの期 待値は1となる。一方、1番目の実験では、1回目の状態操作 後、重ね合わせ状態 $|-1\rangle + |1\rangle$ に対して観測を行う。この 観測では確率的に $|-1\rangle + |1\rangle$ に対して観測を行う。この 観測では確率的に $|-1\rangle + |1\rangle$ に量子的な射影が起こる ので、次の状態操作で $|-1\rangle + |1\rangle$ か $|-1\rangle - |1\rangle$ の重ね合 わせ状態が生成され、状態の読み出しの期待値はどちらの 場合も0となる。つまり、2つの実験の読み出しの期待値の差 $|d_{\rho}|$ は1である。実際の実験では、読み出しの明瞭度に制 限があるため $|d_{\rho}|$ は1以下の有限な値となる。以上の考察 から、実在性が成立する場合は、 $d_{\rho}=0$ 、非実在性が成立 する場合は $|d_{\rho}|$ >0となることが期待される。この実験をメイ ン実験と呼ぶ。

なお、「状態を乱さない観測」でメイン実験を行うのが理 想的だが、ノイズの存在や観測の不完全性のため、現実に は「観測による状態の乱れ」がわずかに存在する。これを 定量的に評価するためのコントロール実験を行う。最初の状 態操作で重ね合わせではなく純粋な |-1〉または |+1〉を用 意し、観測の有無による読み出し結果の違いを評価する。こ こでは、|-1〉または |+1〉を準備した際の、読み出しの期 待値の差をそれそれd_g、d_eと定義する。理想的にはd_g=d_e=0 だが、実際には観測による状態の乱れにより0からのわずか なずれが生じる。ここまでの実験結果を図4 (d) に示す。d_ρ はd_gとd_eの間を大きく超えた値をとり、磁束量子ビットの振る舞 いは実在性では説明できず、非実在性が成立すること意味 している。この実験結果は、実験誤差の標準偏差の約84倍 の精度で、磁束量子ビットにおける量子重ね合わせ状態の 実現を示しており、マクロな系に量子力学が適応できること が実証された。

4. おわりに

前半では、新しい非ノイマン型コンピュータであるCIMが、 特定の最適化問題に関して従来型のコンピュータを上回る特 性を示すことを紹介した。今後は、システムの大規模化によ り実社会の問題への応用が期待される。後半では、一個の 電子などの微視的なスケールでしか現れていなかった量子重 ね合わせ状態という量子力学の本質的な現象が、光学顕微 鏡で見える程度のスケールのデバイス上のマクロな電流にお いても現れることを実証した。今後は、さらにマクロなスケー ルでの非実在性の検証が期待される。

参考文献

- T. Umeki, M. Asobe, and H. Takenouchi, Opt. Express 21, 12077 (2013).
- [2] A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, Nat. Photon. 8, 937 (2014).
- [3] T. Inagaki, I. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, Nat. Photon. 10, 415 (2016).
- [4] H. Takesue and T. Inagaki, Opt. Lett. 41, 4273 (2016).
- [5] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue, Science 354, 603 (2016).
- [6] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, Science 354, 614 (2016).
- [7] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
- [8] G. C. Knee, K. Kakuyanagi, M-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, S. Saito, A. J. Leggett, and W. J. Munro, Nat. Comm. 7, 13253 (2016).