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Development of a Combinatorial Optimization  
Calculation Engine

connection architecture that can express mutual interaction among 
all bits (Figure 1).

2.2 Acceleration by parallel trials
The operating cycle of the Digital Annealer is divided into 

two phases: the trial phase that selects bit inversion so as to satisfy 
an acceptance criterion and an update phase that inverts the 
selected bit (Figure 2). 

The trial phase takes the current bit set X = (x1, x2, … xN) 
and inverts a single bit value xi to 1- xi to obtain N-element 
neighboring state X(i) to be examined. Letting ΔEi denote the 
increase in energy E(X) obtained by making a transition from 
current state X to neighboring state X(i), the Metropolis-Hastings 
criterion given by Eq. (2) is used to decide whether to accept the 
bit inversion.

A(ΔEi ) = min[1, exp(-𝛽ΔEi )]    (2)  
Here, A(ΔEi) denotes the inversion-acceptance probability for 

energy change ΔEi when inverting bit xi to 1-xj and 𝛽 (=1/T) is 
the reciprocal of temperature T used in the simulated annealing 
method. Now, an Acceptance Decision Block (ADB) established 
for each bit compares the value of ΔEi for each state change with 
an appropriate random number (noise) and outputs a binary flag 
that takes on the value of 1 with the acceptance probability of 
Eq. (2). A value of 1 for this binary flag means that inverting the 
corresponding bit is good. Finally, the update selector selects a 
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1. Introduction
It is said that improving performance in semiconductor 

integrated circuits through scaling is slowing down and will 
essentially come to an end in several years[1]. One means of 
improving performance without depending on scaling is to employ 
specialized domain-specific hardware, but this creates another 
problem in that increasing the degree of specialization narrows the 
application area making it difficult to recoup development costs. It 
is therefore important to focus on domains that can be applied as 
much as possible to a broad range of fields.

The need for selecting an optimal combination from among 
many combinations is present in a variety of fields. In general, 
the time needed to solve a combinatorial optimization problem 
increases dramatically as the scale of the problem grows, and 
as a result, conventional computers are limited in the scale that 
they can handle. Against this background, we have developed 
Digital Annealer, an optimization calculation engine for solving 
combinatorial optimization problems. This paper describes Digital 
Annealer architecture and introduces acceleration and scaling 
technologies.

2. Digital Annealer architecture
2.1 Search technique using the Ising energy function

Digital Annealer performs statistical searching in parallel 
based on a Markov Chain Monte Carlo method (MCMC), which 
entails minimizing the Ising energy function shown by Eq. (1) at 
high speed.

E(X) = -(1/2)∑i,j Wij xi xj-∑i bi xi  (1) 
xi ∈{0,1}  (i = 1, 2, …, N), Wii = 0, Wij = Wji 

Here, X is a set of bits with X = (x1, x2, …, xN). N bit values 
xi, (i = 1, 2, …, N) expresses a combination. Wij denotes the 
combination coefficient between bit i and bit j and bi is a bias 
term with respect to each bit. Digital Annealer features a full-

■ Figure 1:  Schematic of full-connection structure

■ Figure 2:  Digital Annealer configuration
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single bit to be inverted based on those bits whose binary flags 
took on the value of 1. If there is no bit candidate for updating, the 
update selector outputs a flag with the value 0.

Here, we explain why the parallel trials scheme results in high-
speed processing compared with conventional MCMC. Given 
the system in state X, let Psingle  denote the probability of making 
a transition to some new state for the case of a single trial in 
ordinary MCMC. Denoting the increase in energy when making 
a transition to neighboring state X(i) as ΔEi, Psingle is given by Eq. 
(3) using the transition-acceptance probability of Eq. (2). 

      (3)
The probability of selecting a specific bit i is uniformly 1/N 

and the probability that an inversion can occur when that bit 
is selected is A(ΔEi ). Consequently, since any bit is fine, the 
probability that an inversion can occur is given by Eq. (3).

We now determine probability Pparallel of making a transition 
to a new state under the parallel trials scheme of Digital Annealer. 
Here, we assume the selection rule that one bit out of N bits is 
selected with the probability given by Eq. (3). Now, considering 
that the probability of discovering a state as a transition 
destination is small when approaching an optimal solution so that 
A(ΔEi ) ≪ 1 (i=1, 2, …, N), we get:

      (4)
Equation (4) shows that the probability of making a transition 

to a new state in the case of parallel trials is N times that of the 
single search scheme. This technique is also advantageous in that 
no convergence problem occurs, which differs from a parallel trials 
scheme that simply updates multiple bits in parallel.

2.3 Acceleration by offset addition
If the state of a system falls into a local minimum of the 

Ising energy function, the probability of exiting that state into 
another one may be quite low even if using parallel trials. In such 
a case, the system will stay at the same local minimum for some 
number of cycles adding to the time taken until convergence. 
To therefore decrease the time stuck in a local minimum, we 
implemented a means of subtracting a positive offset Eoff from the 
energy increment. This is practically equivalent to multiplying 
the common factor exp(𝛽∙Eoff) > 1 by the acceptance probability 
of state inversion. To execute this, we add a fixed 
incremental value to the offset using an offset 
generator whenever a new candidate for bit inversion 
cannot be found and continue increasing the 
offset until the next state is found. This method 
dynamically controls the offset value so that the 
probability of finding the next destination for state 
inversion is 1 thereby shortening the time stuck in a 
local minimum.

2.4 Exchange Monte Carlo Method
There are a variety of acceleration techniques in 

stochastic searching using replicas. The simplest of 
these techniques is simple parallel operation, which 
gives the same problem to multiple replicas and 
performs statistically independent searches. Given 
M replicas, let the state vector of those replicas 

with the lowest objective function (energy) be the solution. Now, 
denoting the accuracy rate of individual replicas when annealing 
each replica for a certain number of cycles as P0, accuracy rate Ptotal 
(M) for all M replicas can be given by Eq. (5). 

Ptotal (M) = 1 - (1-P0)M   (5) 
Thus, to obtain a total accuracy rate Ptotal (k) of 99%, the 

accuracy rate P0 of individual replicas must be P0=0.99 for M=1, 
P0=0.37 for M=10, and P0=0.045 for M=100. The time required 
(number of cycles) to obtain a correct answer becomes shorter by 
the amount deemed acceptable in making the target accuracy rate 
of individual anneal blocks smaller.

A serious problem in the simulated annealing method is that 
the state vector can become stuck near a local minimum as the 
temperature drops thereby slowing down the process of arriving 
at a true solution. This is known as the “hardly relaxing” problem 
in simulated annealing[2]. While Digital Annealer achieves high-
speed processing by shortening the average trial time, it does not 
in essence solve the “hardly relaxing” problem. In addition, simple 
parallel operation as well cannot solve this problem. 

In the field of statistical physics, methods for solving the 
“hardly relaxing” problem were first devised in the mid-1990s. 
These methods conduct a stochastic search using multiple 
statistical ensembles (replicas) having different parameters (such 
as temperature). The exchange Monte Carlo method is one such 
method that uses multiple replicas[3]. This method prepares M 
replicas with different temperatures (T1>T2>…>TNe ) and conducts 
a stochastic search on each. It also exchanges state vectors between 
replicas with adjacent temperatures under certain conditions (using 
the Metropolis flow rule). Exchanging states in this manner can 
create a path between low-temperature replicas (that easily fall 
into “hardly relaxing”) and high-temperature replicas (that have no 
“hardly relaxing” problem) and thereby solve the “hardly relaxing” 
problem overall (Figure 3). Digital Annealer supports both simple 
parallel operation and the exchange Monte Carlo method.

3. Scaling technologies
3.1 Approaches to scaling up

Problems of increasingly larger scale must be supported to 
expand the application domain of Digital Annealer. We have 
therefore been engaged in the ongoing development of scaling 

■ Figure 3: Stochastic searching by the exchange Monte Carlo method
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technologies from both hardware and software perspectives. 
At present, the number of bits N that can be handled by first-
generation Digital Annealer hardware is 1,024 bits. To begin 
with, we will expand N in second-generation Digital Annealer 
hardware to 8,192 bits. Then, by combining with technology for 
decomposing and solving the problem by software means, we 
will enable Digital Annealer to deal with even larger problems 
than that capable by only hardware scaling thereby expanding its 
application domain even further.

3.2 Problem decomposition technology
Simply decomposing a large-scale problem into portions that 

can be input into the system’s hardware and optimizing each 
of these portions does not make for total optimization. This is 
because mutual relationships exist among these portions such 
that once one is optimized another is affected. Here, extracting 
a portion of the problem, fixing the states of the locations not 
extracted, and optimizing only the extracted location can achieve 
a partial optimization, but it cannot obtain a sufficient effect if an 
appropriate location has not been selected.

Against the above background, we developed technology 
that can process a problem on a scale larger than that possible 
on hardware alone. Applying this technology to the second-
generation Digital Annealer will enable application to problems on 
a scale of 100,000 bits.

This technology, called the problem decomposition method, 
begins by determining an initial solution to the entire problem by 
performing a short-time total search. Next, it extracts a portion 
of the problem on a scale that can be input to the hardware and 
searches for a solution to that part using Digital Annealer. It 
then repeats a flow that returns that result to the total search any 
number of times while changing the location to be extracted. 
Finally, it derives a solution for the large-scale problem overall 
(Figure 4).

An important factor in improving the efficiency of optimizing 
the entire problem is determining what portions to extract 
taking the characteristics of the problem into account. For this 

reason, we developed several decomposition methods focusing on 
relationships within the problem, such as a method that performs 
extraction centered about elements that easily change within the 
entire problem and a method that partitions the problem into 
locations for which inter-element bonding is small. Selecting a 
decomposition method applicable to the target problem enables 
solution searching with good efficiency for large-scale problems.

3.3 Application to a stable structure search problem
Focusing on simulation seeking a stable structure of a medium 

molecule drug candidate, we have confirmed that Digital 
Annealer using the above problem decomposition technology can 
be applied to large-scale problems as described below (Figure 5).

In medium molecule drug discovery, a medium molecule drug 
candidate that connects several to about 50 amino acids in a chain 
can demonstrate a drug effect by binding strongly with a targeted 
protein. To this end, the first step is to use Digital Annealer to 
search for the most stable structure after modeling each amino 
acid as a point on a lattice based on binding relationships among 

■ Figure 4: Problem decomposition method

■ Figure 5: Application to a stable structure search problem
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those amino acids. The next step is to investigate the binding 
strength between the amino-acid structure just found and the 
target protein through docking calculations. Repeating this flow 
about 1,000 times enables a medium molecule drug candidate 
with high drug efficacy to be found.

We have demonstrated that applying this problem 
decomposition technology to the second-generation Digital 
Annealer can shorten simulation time for a medium molecule 
drug candidate on a scale of 48 amino acids (30K bits) from several 
hours by a conventional computer using the same technique 
for modeling amino acids to several minutes. We expect the 
application of the developed technology to Digital Annealer to 
accelerate the development of medium molecule drugs that have 
been attracting attention as next-generation drugs.

4. Expansion of application fields
To apply Digital Annealer to combinatorial optimization 

problems in a variety of real-world fields, it will be necessary to 
develop software for application to real problems in collaboration 
with specialists in those fields. In this regard, 1QB Information 
Technologies Inc. (Headquarters: Vancouver, Canada), a company 
excelling in the development of quantum computing applications, 
began collaborative work with Fujitsu in 2017 including the 
construction of an application development platform. Fujitsu 
Laboratories, meanwhile, entered into a strategic partnership 
with the University of Toronto also in 2017 establishing a research 

center in Toronto. It also concluded a comprehensive collaborative 
activity agreement with Waseda University for joint research on 
Digital Annealer in 2018 that included the establishment of a 
joint-research center (Figure 6). Going forward, Fujitsu plans 
to incorporate the results obtained from such joint research into 
Digital Annealer business with the aim of promoting solutions to 
real-world problems and contributing to social development and 
economic growth.

5. Conclusion
In this paper, we described the architecture of Digital 

Annealer, an optimization calculation engine for solving 
combinatorial optimization problems, and introduced acceleration 
and scaling technologies. Going forward, we plan to incorporate 
more acceleration and scaling technologies into Digital Annealer 
as needed. Furthermore, in addition to improving performance, 
we intend to expand the range of application fields through 
joint research with diverse research institutions and contribute to 
business in various fields.
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■ Figure 6: Digital Annealer community


